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Abstract

Let F denote a non-archimedean local field of characteristic zero
with odd residual characteristic. Using the results of Gan and Savin,
in this paper we determine the first occurrence indices and theta lifts of
strongly positive discrete series representations of metaplectic groups
over F in terms of our recent classification of this class of representa-
tions. Also, we determine the first occurrence indices of some strongly
positive representations of odd orthogonal groups.

1 Introduction

One of the main issues in the local theta correspondence is a precise deter-
mination of the theta lifts of irreducible representations. This problem is by
now completely solved for cuspidal representations (Théorème principal in
[14]) and for discrete series for dual pair (Sp(n), O(V )) (Theorems 4.2 and
4.3 in [15]). In that paper, Muić used an inductive procedure to investigate
certain embeddings of theta lifts of discrete series representations in a way
to obtain explicit information about the structure of these lifts and to derive
the first occurrence indices.

Description given there is based on the classification of discrete series of
the classical groups given by Mœglin and Tadić in papers [12, 13], which
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relies on certain conjectures, called the basic assumption (we emphasize that
Arthur has recently announced a proof of his conjectures about the stable
transfer coming from the twisted endoscopy which should imply the basic
assumption). On the other hand, we have recently classified the strongly
positive discrete series of metaplectic groups and our classification uses no
hypothesis and can be applied much more generally. It is natural to try to
relate this classification to the determination of the lifts of those representa-
tions. Thus, it is the purpose of this paper to determine the first occurrence

indices of the strongly positive discrete series for the dual pair (S̃p(n), O(V ))
and to obtain as much information about the structure of theta lifts of such
representations as possible.

In his other paper ([17]), Muić has obtained some fundamental results
on the structure of theta lifts of discrete series without using the Mœglin-
Tadić classification. Although very powerful, methods used there could not
provide an explicit description of the first occurrence indices. Nevertheless,
his results have recently been rewritten by Gan and Savin for the dual pair

(S̃p(n), O(V )) over a non-archimedean field of characteristic zero with odd
residual characteristic ([4]). Other crucial result of their paper is a natural
correspondence between irreducible representations on the certain level of
metaplectic and odd orthogonal towers, which partially generalizes results of
Waldspurger ([21, 22]).

These results are of much importance for us, because they allow us to start
our investigation of the first occurrence index with the lift that is a discrete
series representation at the quite low level of the tower. The disadvantage of
this approach is that it prevents us from determining the both first occurrence
indices when lifting from the metaplectic tower. So, we determine just the
lower one.

We do not adopt the methods used in [15] and rather choose to describe
theta lifts of strongly positive discrete series directly from their cuspidal sup-
ports. The advantage of using this method lies in the fact that the structure
of the obtained theta lifts can be explicitly described in a purely combinato-
rial way.

Now we describe contents of the paper, section by section.
The next section presents some preliminaries, while in the third section

we summarize without proofs the relevant material on the strongly positive
discrete series. In that section we also obtain some useful embeddings of the
general discrete series representations. Section 4 provides a detailed exposi-
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tion of the results about Howe correspondence which will be used through
the paper. The fifth section is a technical heart of the paper, it contains
several results regarding the theta lifts of irreducible representations.

In Section 6 we state and prove our main results about the lifts of strongly
positive irreducible representations of the metaplectic groups using case by
case consideration. In Section 7 we determine the first occurrence indices of
certain strongly positive representations of the odd orthogonal groups. The
observed cases happen to be quite similar in both directions, so the proofs
made in the sixth section help us shorten those in the seventh one.

However, for the sake of completeness and to avoid possible confusion,
we discuss the details of the lifts of representations of the metaplectic groups
and those of the orthogonal ones in separate sections.

The author would like to thank Goran Muić for suggesting the problem.

2 Notations and preliminaries

Let F be a non-archimedean local field of characteristic zero with odd residual
characteristic.

For a reductive group G, let Irr(G) stand for the set of isomorphism
classes of irreducible admissible (genuine) representations of G.

First we discuss the groups that we consider.
Let V0 be an anisotropic quadratic space over F of odd dimension. Then

its dimension can only be 1 or 3. For more details about the invariants of this
space, such as the quadratic character χV0 related to the quadratic form on
V0, we refer the reader to [7] and [9]. In each step we add a hyperbolic plane
and obtain an enlarged quadratic space, a tower of quadratic spaces and a
tower of corresponding orthogonal groups. In the case when r hyperbolic
planes are added to the anisotropic space, enlarged quadratic space will be
denoted by Vr, while a corresponding orthogonal group will be denoted by
O(Vr). Set mr = 1

2
dimVr.

To a fixed quadratic character χV0 one can attach two odd orthogonal
towers, one with dimV0 = 1 (+–tower) and the other with dimV0 = 3 (−–
tower), as in Chapter V of [8]. In that case, for corresponding orthogonal
groups of the spaces obtained by adding r hyperbolic planes we write O(V +

r )
and O(V −

r ).

Let S1(n) be the Grothendieck group of the category of all admissible
representations of finite length of O(Vn) (i.e., a free abelian group over the
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set of all irreducible representations of O(Vn)) and define S1 =
⊕

n≥0 S1(n).

Let S̃p(n) be the metaplectic group of rank n, the unique non-trivial
two-fold central extension of symplectic group Sp(n, F ). In other words, the
following holds:

1 → µ2 → S̃p(n) → Sp(n, F ) → 1,

where µ2 = {1,−1}. The multiplication in S̃p(n) (which is as a set given
by Sp(n, F ) × µ2) is given by the Rao’s cocycle ([18]). More details on the
structural theory of metaplectic groups can be found in [5], [8] and [18].

In this paper we are interested only in genuine representations of S̃p(n)
(i.e., those which do not factor through µ2). So, let S2(n) be the Grothendieck
group of the category of all admissible genuine representations of finite length

of S̃p(n) and define S2 =
⊕

n≥0 S2(n).

Let ˜GL(n, F ) be a double cover of GL(n, F ), where the multiplication is
given by (g1, ε1)(g2, ε2) = (g1g2, ε1ε2(detg1, detg2)F ). Here εi ∈ µ2, i = 1, 2
and (·, ·)F denotes the Hilbert symbol of the field F .

The pair (Sp(n), O(Vr)) is a reductive dual pair in Sp(n · dimVr). Since
the dimension of the space Vr is odd, the theta correspondence relates the

representations of the metaplectic group S̃p(n) and those of the orthogonal
group O(Vr). We use the abbreviation n1 = n · dimVr. Let ωn1,ψ be the

Weil representation of S̃p(n1) depending on the non-trivial additive charac-
ter ψ, and let ωn,r denote the pull-back of that representation to the pair

(S̃p(n), O(Vr)).
Here and subsequently, ψ denotes a non-trivial additive character of

F . Further, we fix a character χV,ψ of ˜GL(n, F ) given by χV,ψ(g, ε) =
χV (detg)εγ(detg, 1

2
ψ)−1. Here γ denotes the Weil invariant, while χV is a

character related to the quadratic form on O(Vr). We write α = χ2
V,ψ and

observe that α is a quadratic character on GL(n, F ).

Let
Rgen =

⊕
n≥0

Rgen(n),

where Rgen(n) denotes the Grothendieck group of smooth genuine represen-
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tations of finite length of ˜GL(n, F ). Similarly, define

R =
⊕
n≥0

R(n),

where R(n) denotes the Grothendieck group of smooth genuine representa-
tions of finite length of GL(n, F ).

To simplify the notation, in the sequel we write

R′ =

{
R, in the orthogonal case
Rgen, in the metaplectic case,

and

S ′ =

{
S1, in the orthogonal case
S2, in the metaplectic case.

By ν we denote the character of GL(n, F ) defined by |det|F .
An irreducible representation σ ∈ S ′ is called strongly positive if for each

representation νs1ρ1×νs2ρ2×· · ·×νskρkoσcusp, where ρi ∈ R′, i = 1, 2, . . . , k
are irreducible cuspidal unitary representations, σcusp ∈ S ′ an irreducible
cuspidal representation and si ∈ R, i = 1, 2, . . . , k, such that

σ ↪→ νs1ρ1 × νs2ρ2 × · · · × νskρk o σcusp,

we have si > 0 for each i.
Irreducible strongly positive representations are called strongly positive

discrete series.

If ρ ∈ R′(m) is an irreducible unitary cuspidal representation, we say that
∆ = {νaρ, νa+1ρ, . . . , νa+kρ} is a segment, where a ∈ R and k ∈ Z≥0. Here
and subsequently, we abbreviate {νaρ, νa+1ρ, . . . , νa+kρ} as [νaρ, νa+kρ]. We
denote by δ(∆) the unique irreducible subrepresentation of νa+kρ×νa+k−1ρ×
· · ·× νaρ. δ(∆) is an essentially square-integrable representation attached to
the segment ∆.

For every irreducible cuspidal representation ρ ∈ R′(m), there exists a
unique e(ρ) ∈ R such that the representation ν−e(ρ)ρ is a unitary cuspidal
representation. From now on, let e([νaρ, νbρ]) = a+b

2
.

For an ordered partition s = (n1, n2, . . . , nj) of some m ≤ n, we denote
by Ps a standard parabolic subgroup of Sp(n, F ) (consisting of block upper-
triangular matrices), whose Levi factor equals GL(n1) × GL(n2) × · · · ×
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GL(nj) × Sp(n − |s|, F ), where |s| = m =
∑j

i=1 ni. Then the standard

parabolic subgroup P̃s of S̃p(n) is the preimage of Ps in S̃p(n). We have the
analogous notation for the Levi subgroups of the metaplectic groups, which
are described in more detail in Section 2.2 of [5]. The standard parabolic
subgroups (containing the upper triangular Borel subgroup) of O(Vr) have
the analogous description as the standard parabolic subgroups of Sp(n, F ). If

P̃s is a standard parabolic subgroup of S̃p(n) described above, or Ps a similar
standard parabolic subgroup of O(Vr), the normalized Jacquet module of a

smooth representation σ of S̃p(n) (resp., O(Vr)) with respect to P̃s(resp., Ps)
is denoted by R

fPs
(σ) (resp., RPs(σ)). From now on, RP1(π)(χ) (or R

fP1
(π)(χ))

stands for the isotypic component of RP1(π) along the generalized character
χ.

Also, when dealing with Jacquet modules of ωn,r, we write shortlyRP1(ωn,r)
(resp., R

eP1
(ωn,r)) for R

S̃p(n)×P1
(ωn,r) (resp., R

eP1×O(Vm)(ωn,r)), following the

notation from [6].

For any irreducible representation π ∈ S ′(n) there exist an ordered par-
tition s = (n1, n2, . . . , nj) of some m ≤ n, cuspidal representations ρi ∈
Irr(R′(ni)) and πcusp ∈ S ′(n− |s|) such that π is an irreducible subquotient
of the induced representation ρ1 × ρ2 × · · · × ρj o πcusp. In this situation, we
write [π] = [ρ1, ρ2, . . . , ρj; πcusp], following the notation used in [8].

Let σ ∈ S ′(n) denote an irreducible representation. To simplify notation,

set P ′
s = Ps in orthogonal case and P ′

s = P̃s in the metaplectic one. We
introduce µ∗(σ) ∈ R′ ⊗ S ′ by

µ∗(σ) =
n∑
k=0

s.s.(P ′
(k)(σ)),

where s.s. denotes the semisimplification. We extend µ∗ linearly to the whole
of S ′.

In the following lemma we recall useful formula for calculations with
Jacquet modules which is valid in both orthogonal and metaplectic case
([20, 5]). Let α′ = α in the metaplectic case, while in the orthogonal case α′

denotes a trivial character.

Lemma 2.1. Let ρ ∈ R′ be an irreducible cuspidal representation and a, b ∈
R such that a+ b ∈ Z≥0. Let σ ∈ S ′ be an admissible representation of finite
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length. Write µ∗(σ) =
∑

π,σ′ π ⊗ σ′. Then the following holds:

µ∗(δ([ν−aρ, νbρ]) o σ) =
b∑

i=−a−1

b∑
j=i

∑
π,σ′

δ([ν−iα′ρ̃, νaα′ρ̃])× δ([νj+1ρ, νbρ])× π

⊗ δ([νi+1ρ, νjρ]) o σ′. (1)

We omit δ([νxρ, νyρ]) if x > y.

We take a moment to recall the formulation of the second Frobenius
isomorphism.
Generally, for some reductive group G′, its parabolic subgroup P ′ with the
Levi subgroup M ′ and opposite parabolic subgroup P ′, the second Frobenius
isomorphism is

HomG′(IndG
′

M ′(π),Π) ∼= HomM ′(π,RP ′(Π)),

for some smooth representation π (resp., Π) of the group M ′ (resp., G′). We
denote the space of the representation π by Vπ.

Above isomorphism can be explicitly described in the following way:
Let Ψ denote the embedding

Ψ : Vπ ↪→ RP ′(IndG
′

M ′(Vπ)),

which corresponds to the open cell P ′P ′ in G′ ([3]). Now, for some T ∈
HomG′(IndG

′

M ′(π),Π), compose Ψ with the corresponding mapping
TP ′ : RP ′(IndG

′

M ′(π)) → RP ′(Π).

3 Embeddings of discrete series

In this section we recall the classification of strongly positive discrete series
and obtain further embeddings of general discrete series which will be used
afterwards in the paper.

In the following theorem we gather the results obtained in the Section 5 of
the paper [10]. The arguments used there rely on Jacquet module methods,
and build up in an essentially combinatorial way from the cuspidal reducibil-
ity values. Moreover, the underlying combinatorics are essentially the same
for classical groups. Thus, our classification is valid for both metaplectic and
orthogonal groups.
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Theorem 3.1. We define a collection of pairs (Jord, σ′), where σ′ is an
irreducible cuspidal representation of some S ′(nσ′) and Jord has the following

form: Jord =
⋃k
i=1

⋃ki

j=1{(ρi, b
(i)
j )}, where

• {ρ1, ρ2, . . . , ρk} is a (possibly empty) set of mutually nonisomorphic ir-
reducible self-dual cuspidal representations of some R′(m1),, R′(m2), . . . ,
R′(mk) such that νaρiρi o σ′ reduces for aρi

> 0 (this defines aρi
).

• ki = daρi
e, the smallest integer which is not smaller that aρi

.

• For each i = 1, . . . , k, b
(i)
1 , . . . , b

(i)
ki

is a sequence of real numbers such

that aρi
− b

(i)
j is an integer, for j = 1, 2, . . . , ki and −1 < b

(i)
1 < b

(i)
2 <

· · · < b
(i)
ki

.

There exists a bijective correspondence between the set of all irreducible
strongly positive representations in S ′ and the set of all pairs (Jord, σ′).

We describe this correspondence more precisely. The pair corresponding
to an irreducible strongly positive representation σ ∈ S ′ will be denoted by
(Jord(σ), σ′(σ)).

Suppose that cuspidal support of σ is contained in the set {νxρ1, . . . ,
νxρk, σcusp : x ∈ R}, with k minimal (here ρi denotes an irreducible cus-
pidal self-dual representation of some R′(nρi

)).
Let aρi

> 0, i = 1, 2, . . . , k, denote the unique positive s ∈ R such that the
representation νsρi o σcusp reduces. Set ki = daρi

e. For each i = 1, 2, . . . , k

there exists a unique increasing sequence of real numbers b
(i)
1 , b

(i)
2 , . . . , b

(i)
ki

,

where aρi
− b

(i)
j is an integer, for j = 1, 2, . . . , ki and b

(i)
1 > −1, such that σ

is the unique irreducible subrepresentation of the induced representation

(
k∏
i=1

ki∏
j=1

δ([νaρi−ki+jρi, ν
b
(i)
j ρi])) o σcusp.

Now, Jord(σ) =
⋃k
i=1

⋃ki

j=1{(ρi, b
(i)
j )} and σ′(σ) = σcusp.

We note that results of [1] should imply that every aρi
in the previous

theorem is half integral.
This classification implies some interesting properties of strongly positive

discrete series, which are listed in the next two lemmas. We note that first
of them is Lemma 3.5 in [11].
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Lemma 3.2. Let σ ∈ S ′ be a strongly positive discrete series. The σ is
uniquely determined by [σ].

Next result is rather straightforward from the mentioned classification:

Lemma 3.3. Let σ ∈ S ′ denote a strongly positive discrete series and suppose
that νxρ appears in [σ], where ρ ∈ R′ is an irreducible unitarizable cuspidal
representation and |x| ≤ 1. Then the representation νxρ appears in [σ] with
multiplicity one. Also, if νyρ appears in [σ] for some y 6= x, then |y| > 1.

Proof. It is enough to prove the lemma for x ≥ 0, since otherwise the same
conclusion can be drawn for |x|.

We write σ as the unique irreducible subrepresentation of the induced rep-

resentation of the form (
∏k

i=1

∏ki

j=1 δ([ν
aρi−ki+jρi, ν

b
(i)
j ρi]))oσcusp. Obviously,

ρ is isomorphic to ρl for some l ∈ {1, 2, . . . , k}.
By the assumption of lemma, there is some j ∈ {1, 2, . . . , kl} such that

aρl
−kl+j ≤ x ≤ b

(l)
j . Strong positivity of σ implies x > 0. Since aρl

−kl+j >
1 for j ≥ 2, it follows that νxρ appears in the segment [νaρl

−kl+1ρl, ν
b
(l)
1 ρl]

and νxρ does not appear in [νaρl
−kl+jρl, ν

b
(l)
j ρl], for j ≥ 2. Further, using

x− 1 ≤ 0 we obtain x = aρl
− kl + 1.

Consequently, νxρ appears in [σ] with multiplicity one.
The inequality |y| > 1 for y 6= x such that νyρ appears in [σ] is a conse-

quence of the fact that |y| − x is a positive integer and x > 0.

The principal significance of the following lemma is that it allows us to
obtain certain embeddings of general discrete series.

Lemma 3.4. Suppose that π ∈ S ′(n) is an irreducible representation, which
is not in the discrete series. Then there exists an embedding of the form

π ↪→ δ([νaρ, νbρ]) o π′,

where a+ b ≤ 0, ρ ∈ R′ and π′ ∈ S ′ are irreducible representations.

Proof. We adopt the approach from the Section 3 of [10], which was moti-
vated by [16]. Suppose that

π ↪→ ρ1 × ρ2 × · · · × ρk o πcusp

is an embedding of the representation π contradicting Casselman’s square-
integrability criterium (whose metaplectic version is written in non-published
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manuscript [2]), ρi ∈ R′ is an irreducible cuspidal representation for i ∈
{1, 2, . . . , k}, and πcusp ∈ S ′(n′) an irreducible cuspidal representation. Fur-
ther, we consider all possible embeddings of the form

π ↪→ δ(∆1)× δ(∆2)× · · · × δ(∆m) o πcusp,

contradicting square-integrability criterium, where ∆1 + ∆2 + · · · + ∆m =
{ρ1, ρ2, . . . , ρk}, viewed as the equality of multisets. Clearly, e(∆i) ≤ 0 for
some i ∈ {1, 2, . . . ,m}. Set of all such embeddings is obviously finite and
non-empty.

Each δ(∆i) is an irreducible representation of some R′(ni) (this defines
ni), for i = 1, 2, . . . ,m. To every such embedding we attach an n− n′-tuple
(e(∆1), . . . , e(∆1), e(∆2), . . . , e(∆2), . . . , e(∆m), . . . , e(∆m)) ∈ Rn−n′ , where
e(∆i) appears ni times.

Denote by

π ↪→ δ(∆′
1)× δ(∆′

2)× · · · × δ(∆′
m′) o πcusp

minimal such embedding with respect to the lexicographic ordering on Rn−n′ .
In the same way as in the proof of Theorem 3.3 from [10], we conclude
e(∆′

1) ≤ e(∆′
2) ≤ · · · ≤ e(∆′

m′). This gives e(∆′
1) ≤ 0. Now Lemma 3.2 of

[13] finishes the proof.

We are ready to describe useful embeddings of general discrete series (this
parallels the result of Lemma 3.1 of [12]).

Theorem 3.5. Let σ ∈ S ′(n) denote a discrete series representation. Then
there exists an embedding of the form

σ ↪→ δ([νa1ρ1, ν
b1ρ1])× δ([νa2ρ2, ν

b2ρ2])× · · · × δ([νakρk, ν
bkρk]) o σsp,

where ai ≤ 0, ai + bi > 0 and ρi ∈ R′ is an irreducible representation for
i = 1, 2, . . . , k, while σsp ∈ S ′ is a strongly positive discrete series (we allow
k = 0).

Proof. If σ is a strongly positive discrete series, then k = 0 and σ ' σsp.
Thus, we may suppose that σ is not strongly positive.

Again, we start we an embedding of the representation σ of the form

σ ↪→ ρ1 × ρ2 × · · · × ρk o σcusp,
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where each ρi ∈ R′ is an irreducible cuspidal representation and σcusp ∈ S ′(n′)
is a partial cuspidal support of σ, and consider all possible embeddings of
the form

σ ↪→ δ(∆1)× δ(∆2)× · · · × δ(∆m) o σcusp,

where ∆1 + ∆2 + · · ·+ ∆m = {ρ1, ρ2, . . . , ρl}, viewed as the equality of mul-
tisets. In the same way as in the proof of the previous lemma, to every such
embedding we attach an element of Rn−n′ and denote by

σ ↪→ δ(∆′
1)× δ(∆′

2)× · · · × δ(∆′
m′) o σcusp (2)

minimal such embedding with respect to the lexicographic ordering on Rn−n′ .
Analysis similar to that in the proof of Theorem 3.3 from [10] shows e(∆′

1) ≤
e(∆′

2) ≤ · · · ≤ e(∆′
m′).

Write each element of the multiset {ρ1, ρ2, . . . , ρl} in a form ρi = νaiρi,u,
where ρi,u is an irreducible unitary cuspidal representation. Define a =
min{ai : 1 ≤ i ≤ l}. The assumption that σ is not strongly positive yields
a ≤ 0. Suppose that νaρ appears in the segment ∆′

i, with i minimal (for
appropriate ρ). Then ∆′

i = [νaρ, νbρ], for some b.
If the segment ∆′

i is not connected in the sense of Zelevinsky with any of
the segments ∆′

1, . . . ,∆
′
i−1, we obtain the embedding

σ ↪→ δ(∆′
i)× δ(∆′

1)× · · · × δ(∆′
m′) o σcusp.

Suppose that there is some segment ∆′
j, 1 ≤ j ≤ i−1, such that the segments

∆′
i and ∆′

j are connected in the sense of Zelevinsky. We choose largest such j

and denote it with j again. Also, we write ∆′
j = [νa

′
ρ, νb

′
ρ]. The intertwining

operator δ(∆′
j)× δ(∆′

i) → δ(∆′
i)× δ(∆′

j) gives the following maps

σ ↪→ δ(∆′
1)× · · · × δ(∆′

j)× δ(∆′
i)× · · · × δ(∆′

m′) o σcusp

→ δ(∆′
1)× · · · × δ(∆′

i)× δ(∆′
j)× · · · × δ(∆′

m′) o σcusp.

Observe that the kernel of previous intertwining operator equals δ(∆′
1) ×

· · ·×δ([νaρ, νb′ρ])×δ([νa′ρ, νbρ])×· · ·×δ(∆′
m′)oσcusp. Since e(∆′

j) ≤ e(∆′
i),

the inequality a < a′ implies e([νaρ, νb
′
ρ]) < e(∆′

j). Thus, minimality of
the embedding (2) shows that σ is not contained in the kernel of observed
intertwining operator, which gives

σ ↪→ δ(∆′
1)× · · · × δ(∆′

i)× δ(∆′
j)× · · · × δ(∆′

m′) o σcusp.
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Repeated application of the above procedure enables us to obtain the
embedding

σ ↪→ δ(∆′
i)× δ(∆′

1)× · · · × δ(∆′
m′) o σcusp.

Lemma 3.2 from [13] implies that there is some irreducible representation
σ1 such that σ ↪→ δ([νaρ, νbρ])oσ1. Square-integrability of σ shows a+b > 0.
We claim that σ1 is a discrete series representation.

Suppose on the contrary that σ1 is not in the discrete series. Then pre-
vious lemma shows that it can be written as a subrepresentation of the in-
duced representation of the form δ([νxρ′, νyρ′]) o σ′1, where x+ y ≤ 0. Thus,
σ ↪→ δ([νaρ, νbρ])×δ([νxρ′, νyρ′])oσ′1. Square-integrability of the representa-
tions σ shows that the segments [νaρ, νbρ] and [νxρ′, νyρ′] are connected in the
sense of Zelevinsky, and consequently σ ↪→ δ([νaρ, νyρ])× δ([νxρ′, νbρ′])oσ′1.

The choice of a shows that a ≤ x, which leads to a + y ≤ x + y ≤ 0,
i.e., e([νaρ, νyρ]) ≤ 0, contradicting square-integrability of σ. In this way we
have proved that σ1 is also a discrete series representation.

We continue in this fashion to obtain that either σ1 is strongly positive
or it can be written as a subrepresentation of the induced representation of
the form δ(νa

′
ρ′, νb

′
ρ′]) o σ2, where a′ ≤ 0 and σ2 ∈ S ′ is a discrete series

representations. Repeating this procedure, after a finite number of steps we
obtain the claim of the theorem.

4 Howe’s correspondence and results of Gan

& Savin and of Kudla

In this section we review some results about Howe correspondence.
For an irreducible genuine smooth representation σ ∈ S2(n), let Θ(σ, r)

be a smooth representation of O(Vr), given as the full lift of σ to the r-level

of the orthogonal tower, i.e., the biggest quotient of ωn,r on which S̃p(n)

acts as a multiple of σ. As a representation of S̃p(n) × O(Vr) it has a form
σ ⊗ Θ(σ, r). We write Θ+(σ, r) (resp., Θ−(σ, r)) for the lift on the +–tower
(resp., −–tower), when emphasizing the tower.

Similarly, if τ is an irreducible representation of O(Vr), then one has its

full lift Θ(τ, n), which is a smooth representation of S̃p(n).

12



In the following theorem we summarize some basic results about the theta
correspondence, which can be found in [8] and [14].

Theorem 4.1. Let σ denote an irreducible genuine representation of S̃p(n).
Then there exists an integer r ≥ such that Θ(σ, r) 6= 0. The smallest such
r is called the first occurrence index of σ in the orthogonal tower. Also,
Θ(σ, r′) 6= 0 for r′ ≥ r.

The representation Θ(σ, r) is either zero or it has finite length. If residual
characteristic of field F is different than 2, then Θ(σ, r) is either zero or it has
a unique irreducible quotient. Following [15], we write σ(r) for this unique
irreducible quotient.

The analogous statements hold for Θ(τ, n) if τ is an irreducible represen-
tation of O(Vr).

Now we state the results of Gan and Savin which serve as a cornerstone
for our determination of lifts of the strongly positive discrete series (Section
6 and Theorem 8.1 of [4]).

Theorem 4.2. Let F be a non-archimedean local field of characteristic 0
with odd residual characteristic. For each non-trivial additive character ψ of
F , there is an injection

Θψ : Irr(S̃p(n)) → Irr(O(V +
n )) t Irr(O(V −

n−1))

given by the theta correspondence (with respect to ψ). Suppose that σ ∈
Irr(S̃p(n)) and τ ∈ Irr(O(V )) correspond under Θψ. Then σ is a discrete
series representation if and only if τ is a discrete series representation.

Let σcusp denote an irreducible cuspidal genuine representation of S̃p(n′).
We write Θ(σ, r) for the smooth isotypic component of σ in ωn,r. Since
σcusp is cuspidal, for the smallest r′ such that Θ(σcusp, r

′) 6= 0 we have that
Θ(σcusp, r

′) is an irreducible cuspidal representation of O(Vr′); we denote it
by τcusp.

Let ρ ∈ R be an irreducible cuspidal selfcontragredient representation.
Results of Silberger (in the orthogonal case, [19]) and those of Hanzer and
Muić (in the metaplectic case, [6]) show that there exist unique non-negative
real numbers s1 and s2 such that the induced representations νs1ρoτcusp and
νs2χV,ψρ o σcusp reduce. If ρ is not a trivial character of F×, then s1 = s2.
Otherwise, the representation νs1 o τcusp reduces for s1 = |n′ − mr′|, while

13



the representation νs2χV,ψ o σcusp reduces for s2 = |mr′ − n′ − 1|, where
mr′ = 1

2
dimVr′ .

We take a moment to state the results from the Section 2 of the paper
[7], which happen to be crucial for our investigation.

Theorem 4.3. Let τ ∈ S1(r) denote an irreducible representation and sup-
pose [τ ] = [ρ1, ρ2, . . . , ρk; τcusp], with τcusp ∈ S1(r

′) being an irreducible cuspi-
dal representation. Let σcusp = τ(n′) be the first non-zero lift of the represen-
tation τcusp, observe that σcusp ∈ S2(n

′) is an irreducible cuspidal representa-
tion. Let σ denote an irreducible quotient of Θ(τ, n). We have the following
possibilities:

• If n ≥ n′+r−r′, then [σ] = [χV,ψν
mr−n, χV,ψν

mr−n+1, . . . , χV,ψν
mr′−n′−1,

χV,ψρ1, χV,ψρ2, . . . , χV,ψρk;σcusp],

• If n < n′+ r− r′, set t = r− r′−n+n′. Then there exist i1, i2, . . . , it ∈
{1, 2, . . . , k} such that ρij = νmr−n−j for j = 1, 2, . . . , t and [σ] =
[χV,ψρ1, . . . , χ̂V,ψρi1 , . . . , χ̂V,ψρit , . . . , χV,ψρk;σcusp], where χ̂V,ψρi means
that we omit χV,ψρi.

Similarly, let σ ∈ S2(n) denote an irreducible representation and suppose
[σ] = [χV,ψρ1, χV,ψρ2, . . . , χV,ψρk;σcusp], with σcusp ∈ S2(n

′) being an irre-
ducible cuspidal representation. Let τcusp = σ(r′) be the first non-zero lift of
the representation σcusp, observe that τcusp ∈ S1(r

′) is an irreducible cuspidal
representation. Let τ denote an irreducible quotient of Θ(σ, r). We have the
following possibilities:

• If r ≥ r′+n−n′, then [τ ] = [νmr−n−1, νmr−n−2, . . . , νmr′−n′ , ρ1, ρ2, . . . , ρk;
τcusp],

• If r < r′+n−n′, set t = r′−n′+n− r. Then there exist i1, i2, . . . , it ∈
{1, 2, . . . , k} such that ρij = νmr−n+j−1 for j = 1, 2, . . . , t and [τ ] =
[ρ1, . . . , ρ̂i1 , . . . , ρ̂it , . . . , ρk; τcusp], where ρ̂i means that we omit ρi.

The next theorem that we need is Kudla’s filtration of Jacquet modules
of the oscillatory representation ([7, Theorem 2.8]):

Theorem 4.4. Let ωn,r denote the oscillatory representation of the group

S̃p(n) × O(Vr) corresponding to the non-trivial additive character ψ. The
following holds:

14



• Let Pj denote the standard maximal parabolic subgroup of O(Vr). Then

Jacquet module RPj
(ωn,r) has S̃p(n)×Mj-invariant filtration given by

Ijk, 0 ≤ k ≤ j, where

Ijk ' Ind
S̃p(n)×Mj

Pjk×fPk×O(Vr−j)
(γjk ⊗ Σ′

k ⊗ ωn−k,r−j).

Here, Pjk is a standard parabolic subgroup of GL(j, F ) which corre-
sponds to the partition (j − k, k), γjk is a character of GL(j − k, F )×

˜GL(k, F ) given by

γjk(g1, g2) = ν−(mr−n− j−k+1
2

)(g1)χV,ψ(g2),

and Σ′
k is a twist of the standard representation of GL(k, F )×GL(k, F )

on the space of smooth locally constant compactly supported complex
valued functions C∞

c (GL(k, F )):

Σ′
k(g1, g2)f(g) = ν−(mr−j+

k−1
2

)νmr−j+
k−1
2 f(g−1

1 gg2).

Especially, a quotient Ij0 equals ν−(mr−n− j+1
2

) ⊗ ωn,r−j and a subrepre-

sentation Ijj equals Ind
S̃p(n)×Mj

GL(j,F )×fPj×O(Vr−j)
(χV,ψ ⊗ Σ′

j ⊗ ωn−j,r−j).

• Let P̃j denote the standard maximal parabolic subgroup of S̃p(n). Then

Jacquet module R
fPj

(ωn,r) has M̃j × O(Vr)-invariant filtration given by

Jjk, 0 ≤ k ≤ j, where

Jjk ' Ind
fMj×O(Vr)

gPjk×Pk× ˜Sp(n−j)
(βjk ⊗ Σ′

k ⊗ ωn−j,r−k).

Here, P̃jk is a standard parabolic subgroup of ˜GL(j, F ) which corre-

sponds to the partition (j − k, k), βjk is a character of ˜GL(j − k, F )×
˜GL(k, F ) given by

βjk(g1, g2) = (χV,ψν
mr−n− j−k−1

2 )(g1)χV,ψ(g2),

and Σ′
k is a twist of the standard representation of GL(k, F )×GL(k, F )

on the space of smooth locally constant compactly supported complex
valued functions C∞

c (GL(k, F )):

Σ′
k(g1, g2)f(g) = νmr+ k+1

2 ν−(mr+ k+1
2

)f(g−1
1 gg2).
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Especially, a quotient Jj0 equals χV,ψν
mr−n+ j−1

2 ⊗ ωn−j,r and a subrep-

resentation Jjj equals Ind
fMj×O(Vr)

˜GL(j,F )×Pj× ˜Sp(n−j)
(χV,ψ ⊗ Σ′

j ⊗ ωn−j,r−j).

5 Some technical results on lifts

The purpose of this section is to state and prove many technical results which
will be of particular importance in the following sections.

An elementary but useful criterion for pushing down the lifts of irreducible
representations is established by the following two propositions.

Proposition 5.1. Let τ ∈ S1(r) be an irreducible representation. Then the
following hold:

1. Suppose that Θ(τ, n) 6= 0. Then R
fP1

(Θ(τ, n+ 1))(χV,ψν
mr−(n+1)) 6= 0.

2. Suppose that RP1(τ)(ν
mr−(n+1)) = 0. Then Θ(τ, n) 6= 0 if and only if

R
fP1

(Θ(τ, n+ 1))(χV,ψν
mr−(n+1)) 6= 0.

Proof. The proof follows the same lines as that of Theorem 4.5 of [6].
Assume that Θ(τ, n) 6= 0. Then there exists an epimorphism ωn,r →

τ ⊗Θ(τ, n). Kudla’s filtration gives the epimorphisms

R
fP1

(ωn+1,r) → χV,ψν
mr−(n+1) ⊗ ωn,r → χV,ψν

mr−(n+1) ⊗ τ ⊗Θ(τ, n).

Using Frobenius reciprocity we get a non-trivial intertwining Θ(τ, n + 1) →
χV,ψν

mr−(n+1) o Θ(τ, n). This obviously proves the first statement of the
proposition.

It remains to prove sufficiency in the second statement. The condition
R
fP1

(Θ(τ, n + 1))(χV,ψν
mr−(n+1)) 6= 0 gives Θ(τ, n + 1) 6= 0, that gives an

epimorphism ωn+1,r → τ ⊗ Θ(τ, n + 1). Applying Jacquet modules, we get
an epimorphism R

fP1
(ωn+1,r) → τ ⊗ χV,ψν

mr−(n+1) ⊗ σ′ for some irreducible
representation σ′ ∈ S1(n). If we suppose that the restriction of this epimor-
phism to a subrepresentation J11 is non-zero, second Frobenius reciprocity
gives a non-zero intertwining map

χV,ψ ⊗ Σ′
1 ⊗ ωn,r−1 → R̃P1(τ̃)⊗ χV,ψν

mr−(n+1) ⊗ σ′.

From this intertwining we deduce τ ↪→ νmr−(n+1) o τ ′, for some irreducible
representation τ ′ ∈ S2(r − 1), contradicting the assumption of proposition.
Consequently, there exists a non-zero intertwining J10 → τ⊗χV,ψνmr−(n+1)⊗
σ′, which gives Θ(τ, n) 6= 0.
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We omit the proof of the next proposition since it is completely analogous
to the proof of the previous one.

Proposition 5.2. Let σ ∈ S2(n) be an irreducible representation. Then the
following hold:

1. Suppose that Θ(σ, r) 6= 0. Then RP1(Θ(σ, r + 1))(ν−(mr+1−n−1)) 6= 0.

2. Suppose that R
fP1

(σ)(χV,ψν
−(mr+1−n−1)) = 0. Then Θ(σ, r) 6= 0 if and

only if RP1(Θ(σ, r + 1))(ν−(mr+1−n−1)) 6= 0.

Now we prove an important result regarding the square-integrability of
the lifts of strongly positive discrete series. In particular, this result gives an
alternative and essentially combinatorial proof of a special case of the results
of [17].

Proposition 5.3. Let σ ∈ S2(n) denote a strongly positive discrete se-
ries. Suppose that Θ(σ, r) 6= 0, for some r such that mr ≤ n + 1

2
, and

R
fP1

(σ)(χV,ψν
−(mk−n−1)) = 0 for k ≥ r + 1. Then σ(r) is a discrete series

representation.

Proof. We prove this proposition by downwards induction on r, starting with
an r such that mr = n + 1

2
. If mr = n + 1

2
, Theorem 4.2 shows our claim.

Thus, suppose that the claim holds for some r + 1 such that mr+1 ≤ n + 1
2
.

We prove it for r.
It may be easily concluded from the proof of Lemma 5.1 (in the same way

as in the proof of Lemma 5.1 from [15]) that there is a non-zero intertwining
σ(r) ↪→ ν−(mr−n−1) o σ(r − 1).

Note that in our case mr < n + 1
2
, which implies −(mr − n − 1) ≥ 3

2
.

Now, suppose that σ(r−1) is not a discrete series representation. According
to Lemma 3.4, there is an embedding σ(r − 1) ↪→ δ([νaρ, νbρ]) o σ′, where
a+ b ≤ 0. Obviously, a ≤ 0.

Since mr − n − 1 ≤ −3
2
, strong positivity of the representation σ and

Lemma 3.3 together with Theorem 4.3 imply there is at most one x ∈ R,
0 < |x| ≤ 1 such that νxρ appears in [σ(r − 1)]. Therefore, b ≤ 0 and
the representation ν−(mr−n−1) × νbρ is irreducible and isomorphic to νbρ ×
ν−(mr−n−1).

We thus get the following embeddings and isomorphisms:

σ(r) ↪→ ν−(mr−n−1) o σ(r − 1) ↪→ ν−(mr−n−1) × δ([νaρ, νbρ]) o σ′

↪→ ν−(mr−n−1) × νbρ× δ([νaρ, νb−1ρ]) o σ′

' νbρ× ν−(mr−n−1) × δ([νaρ, νb−1ρ]) o σ′,
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contradicting square-integrability of σ(r). This proves the proposition.

In pretty much the same way one can also prove

Corollary 5.4. Let τ ∈ S1(r) denote a strongly positive discrete series.
Suppose that Θ(τ, n) 6= 0, for some n such that mr ≥ n+ 1

2
. Then τ(n) is a

discrete series representation.

The last two propositions of this section contain rather important result
on the transfer of certain embeddings by the theta lifts. We omit the proofs,
since this results can be obtained in completely analogous way as in [15,
Remark 5.2], i.e., by precise examination of the filtration of Jacquet modules
quoted in the Theorem 4.4.

Proposition 5.5. Suppose that the representation σ ∈ Irr(S̃p(n)) may be
written as an irreducible subrepresentation of the induced representation of
the form δ([νaρ, νbρ]) o σ′, where ρ is an irreducible cuspidal genuine repre-

sentation, σ′ ∈ Irr(S̃p(n′)) and b− a ≥ 0. Let Θ(σ, r) 6= 0. Then one of the
following hold:

• There is an irreducible representation τ of some O(Vr′) such that σ(r)
is a subrepresentation of δ([νaχ−1

V,ψρ, ν
bχ−1

V,ψρ]) o τ .

• There is an irreducible representation τ of some O(Vr′) such that σ(r)
is a subrepresentation of δ([νa+1χ−1

V,ψρ, ν
bχ−1

V,ψρ]) o τ.

The latter situation is impossible unless (a, ρ) = (mr − n, χV,ψ).

Proposition 5.6. Suppose that the representation τ ∈ Irr(O(Vr)) may be
written as an irreducible subrepresentation of the induced representation of
the form δ([νaρ, νbρ]) o τ ′, where ρ is an irreducible cuspidal representation,
τ ′ ∈ Irr(O(Vr′)) and b− a ≥ 0. Let Θ(τ, n) 6= 0. Then one of the following
holds:

• There is an irreducible representation σ of some S̃p(n′) such that τ(n)
is a subrepresentation of δ([νaχV,ψρ, ν

bχV,ψρ]) o σ.

• There is an irreducible representation σ of some S̃p(n′) such that τ(n)
is a subrepresentation of δ([νa+1χV,ψρ, ν

bχV,ψρ]) o σ.

The latter situation is impossible unless (a, ρ) = (n−mr + 1, 1F×).
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6 Lifts of strongly positive discrete series of

the metaplectic group

In this section we determine the structure of certain lifts of the strongly
positive discrete series of the metaplectic groups. We also obtain precise
information about the first occurrence of strongly positive discrete series in
the orthogonal tower, depending on its cuspidal support.

Let σ ∈ Irr(S̃p(n)) denote a strongly positive discrete series. Accord-
ing to the classification given in Theorem 3.1, we may write σ as a unique
irreducible subrepresentation of the induced representation

(
k∏
i=1

ki∏
j=1

δ([χV,ψν
aρi−ki+jρi, χV,ψν

b
(i)
j ρi])) o σcusp, (3)

with k minimal and ki minimal for i = 1, 2, . . . , k, where σcusp ∈ Irr(S̃p(n′))
is an irreducible cuspidal representation and ρi an irreducible cuspidal rep-
resentation of GL(nρi

, F ) (this defines nρi
) for i = 1, 2, . . . , k. We note that

the minimality of k and ki for i = 1, 2, . . . , k implies that there are no empty
segments in (3).

Theorem 4.2 shows that either Θ+(σ, n) 6= 0 or Θ−(σ, n− 1) 6= 0.
The following theorem describes the first occurrence indices of the strongly

positive discrete series of metaplectic group.

Theorem 6.1. Let σ ∈ Irr(S̃p(n)) be a strongly positive discrete series. If
Θ+(σ, n) 6= 0, let (ε, r) = (+, n), otherwise let (ε, r) = (−, n − 1). Sup-

pose that σcusp ∈ Irr(S̃p(n′)) is a partial cuspidal support of σ and τcusp ∈
Irr(O(V ε

r′)) the first non-zero lift of σcusp. Further, set M = {|x| : χV,ψν
x

appears in [σ]} and denote by amin the minimal element of M . If M = ∅, let
amin = n′ − 1

2
dimV ε

r′ + 2.
If amin = 1

2
or n′ = r′ + 1

2
(dimV ε

0 − 1), then the first occurrence index of
σ is r. Otherwise, the first occurrence index of σ is r − amin + 3

2
.

The rest of this section will be devoted to the proof of Theorem 6.1.
The proof will be divided in several cases depending on the structure of the
cuspidal support of σ and on the first non-zero lift of σcusp.

In this section, mr denotes 1
2
dimV ε

r = n+ 1
2

and σ(l) denotes the unique
irreducible quotient of the representation Θε(σ, l).

19



Observe that Proposition 5.2 implies that the representation σ(l) is not
a discrete series representation for l > r.

There are two main cases which we consider.

Suppose that the representation χV,ψν
1
2 does not appear in [σ]. Since

mr − n = 1
2
, Theorem 4.3 yields n′ ≥ r′ + 1

2
(dim(V ε

0 ) − 1). We have two
possibilities:

• n′ = r′ + 1
2
(dim(V ε

0 )− 1)

In this case both representation χV,ψν
soσcusp and νsoτcusp reduce for s =

1
2
. Therefore, by Theorem 3.1, there is no representations of the form χ,ψν

s

appearing in [σ]. Further, Theorem 3.5 of [6] implies that the representation
χV,ψν

sρi oσcusp reduces if and only if the representation νsρi o τcusp reduces.

One of the main results of the paper [4] states that σ(r) is a discrete series
representation. Applying Theorem 2 we obtain the embedding

σ(r) ↪→ δ([νa1ρ′1, ν
b1ρ′1])× δ([νa2ρ′2, ν

b2ρ′2])× · · · × δ([νalρ′l, ν
blρ′l]) o τsp,

where ai ≤ 0 and ρ′i ∈ {ρ1, ρ2, . . . , ρk} for i = 1, 2, . . . , l, and τsp ∈ Irr(O(V ε
r′))

a strongly positive discrete series, for some r′.

Since the representation σ is strongly positive, Theorem 4.3 and Lemma
3.3 show that for every i ∈ {1, 2, . . . , k} there is at most one representation
of the form νxρi that appears in [σ(r)] with 0 ≤ |x| < 1. In the same way as
in the proof of Proposition 5.3 we deduce σ(r) ' τsp, i.e., σ(r) is a strongly
positive representation.

It is now easy to see, using Lemma 3.2, that σ(r) is unique irreducible
subrepresentation of the induced representation

(
k∏
i=1

ki∏
j=1

δ([νaρi−ki+jρi, ν
b
(i)
j ρi])) o τcusp.

Suppose that Θ(σ, r−1) 6= 0. Then Proposition 5.2 impliesRP1(Θ(σ, r))(ν
1
2 ) 6=

0, which is impossible. Thus, r is the first occurrence index of σ.

• n′ > r′ + 1
2
(dim(V ε

0 )− 1)

20



In this case, the representation χV,ψν
soσcusp reduces for s = n′−mr′ +1,

and the representation νs o τcusp reduces for s = n′ −mr′ .

Observe that [σ(r)] is obtained from [σ] by multiplying with χ−1
V,ψ all rep-

resentations of the form χV,ψν
xρi appearing in [σ], adding the representations

ν−
1
2 , ν−

3
2 , . . . , νmr′−n′ and replacing σcusp with τcusp.

There are two possible cases which we consider:

1. Some representation of the form χV,ψν
s, s ∈ R, appears in [σ]: We may

suppose that ρ1 is a trivial representation. Note that aρ1 − k1 + 1 is
strictly greater than 1

2
and aρ1 equals n′ −mr′ + 1.

For simplicity of notation, let aj stand for aρ1−k1+j, for j = 1, 2, . . . , k1.
Again, we know that σ(r) is a discrete series representation. Inspecting
its cuspidal support more precisely, it is not hard to see that it has to be
strongly positive. Using Lemma 3.2 we get that σ(r) can be obtained
as the unique irreducible subrepresentation of

ν
1
2 × ν

3
2 × · · · × νa1−2 ×

k1∏
j=1

δ([νaj−1, νb
(1)
j ]))×

(
k∏
i=2

ki∏
j=1

δ([νaρi−ki+jρi, ν
b
(i)
j ρi])) o τcusp.

If a1 ≥ 5
2
, Theorem 5.3 from [11] implies RP1(σ(r))(ν

1
2 ) 6= 0. If a1 = 3

2
,

the same result shows that RP1(σ(r))(ν
1
2 ) = 0 (since b

(1)
1 ≥ a1 >

1
2
).

Using Proposition 5.2 we conclude that Θε(σ, r − 1) 6= 0 if a1 ≥ 5
2

and
Θε(σ, r − 1) = 0 otherwise.

If a1 ≥ 5
2
, combining the square-integrability of σ(r−1) (by Proposition

5.3) with the fact that [σ(r− 1)] is obtained from [σ(r)] by subtracting

ν
1
2 , we get that σ(r − 1) is strongly positive discrete series which can

be realized as a unique irreducible subrepresentation of

ν
3
2 × ν

5
2 × · · · × νa1−2 ×

k1∏
j=1

δ([νaj−1, νb
(1)
j ]))×

(
k∏
i=2

ki∏
j=1

δ([νaρi−ki+jρi, ν
b
(i)
j ρi])) o τcusp.
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Proceeding with the same analysis as above, we obtain that Θε(σ, r −
l) 6= 0 for l = 1, 2, . . . , r − a1 + 3

2
, and σ(r − l) is a strongly positive

discrete series which can be realized as a unique irreducible subrepre-
sentation of

νl+
1
2 × νl+

3
2 × · · · × νa1−2 ×

k1∏
j=1

δ([νaj−1, νb
(1)
j ])×

(
k∏
i=2

ki∏
j=1

δ([νaρi−ki+jρi, ν
b
(i)
j ρi])) o τcusp.

Further, it is easy to check that the first occurrence index of σ equals
r − a1 + 3

2
.

2. There is no representation of the form χV,ψν
s, s ∈ R, appearing in

[σ]: As in the previous case we conclude that σ(r) is strongly posi-
tive discrete series. An easy computation shows that σ(r) is a unique
irreducible subrepresentation of the induced representation

ν
1
2 × ν

3
2 × · · · × νn

′−mr′ × (
k∏
i=1

ki∏
j=1

δ([νaρi−ki+jρi, ν
b
(i)
j ρi])) o τcusp.

Now Theorem 5.3 from [11] shows that RP1(σ(r))(ν
1
2 ) 6= 0. Since

R
fP1

(σ)(χV,ψν
1
2 ) = 0, part 2 of Proposition 5.2 implies Θε(σ, r− 1) 6= 0.

Note that [σ(r− 1)] and [σ(r)] differ by ν
1
2 . Proposition 5.3 now shows

that σ(r− 1) is a discrete series representation, and we again conclude
that it must be strongly positive. Thus, σ(r−1) is a unique irreducible
subrepresentation of the induced representation

ν
3
2 × ν

5
2 × · · · × νn

′−mr′ × (
k∏
i=1

ki∏
j=1

δ([νaρi−ki+jρi, ν
b
(i)
j ρi])) o τcusp.

If n′−mr′ >
1
2
, in the same way as above we deduce Θε(σ, r−2) 6= 0. We

continue in this fashion obtaining Θε(σ, r− j) 6= 0 for j = 1, 2, . . . , n′−
mr′ +

1
2
, while σ(r − j) is a strongly positive discrete series which can

be characterized as the unique irreducible subrepresentation of

νj+
1
2 × νj+

3
2 × · · · × νn

′−mr′ × (
k∏
i=1

ki∏
j=1

δ([νaρi−ki+jρi, ν
b
(i)
j ρi])) o τcusp.
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From Proposition 5.2 we conclude that the first occurrence index of σ
equals r − n′ +mr′ − 1

2
= r − (n′ − 1

2
dimV ε

r′ + 2) + 3
2
.

Second, suppose that the representation χV,ψν
1
2 appears in [σ]. There is

no loss of generality in assuming that ρ1 is a trivial representation. We have
to examine the following three possibilities:

• n′ = r′ + 1
2
(dim(V ε

0 )− 1)

Observe that in this case both representation χV,ψν
soσcusp and νsoτcusp

reduce for s = 1
2
. Obviously, Theorem 3.1 implies k1 = 1.

Observe that [σ(r)] is obtained from [σ] simply by replacing σcusp with

τcusp and multiplying all G̃L-members of [σ] with χ−1
V,ψ, discrete series σ(r)

may be realized as the unique irreducible subrepresentation of

δ([ν
1
2 , νb

(1)
1 ])× (

k∏
i=2

ki∏
j=1

δ([νaρi−ki+jρi, ν
b
(i)
j ρi])) o τcusp.

We just note that for each i ∈ {1, 2, . . . , k} there is at most one x ∈ R,
0 ≤ |x| ≤ 1, such that νxρi appears in [σ(r)], thus τ has to be strongly
positive.

Obviously, RP1(σ(r))(ν
1
2 ) 6= 0 if and only if b

(1)
1 = 1

2
.

If b
(1)
1 > 1

2
, using Proposition 5.2 we directly conclude Θε(σ, r − 1) = 0.

Suppose that b
(1)
1 = 1

2
. If Θε(σ, r − 1) 6= 0, we get that ν

1
2 does not appear

in [σ(r − 1)], contradicting Proposition 5.5 (we are in the first case there).
Thus, r is the first occurrence index of σ.

• n′ < r′ + 1
2
(dim(V ε

0 )− 1)

In this case the representation χV,ψν
s o σcusp reduces for s = mr′ −n′− 1

and the representation νs o τcusp reduces for s = mr′ − n′.

According to Theorem 4.3, [σ(r)] is obtained from [σ] by multiplying

with χ−1
V,ψ all G̃L-members of [σ], subtracting the representations ν

1
2 , ν

3
2 , . . . ,

νmr′−n′−1 and replacing σcusp with τcusp. In the same way as before, we
conclude that σ(r) is strongly positive discrete series, which is characterized
as a unique irreducible subrepresentation of

δ([ν
3
2 , νb

(1)
1 ])× δ([ν

5
2 , νb

(1)
2 ])× · · · × δ([νmr′−n′ , νb

(1)
k1 ])×
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(
k∏
i=2

ki∏
j=1

δ([νaρi−ki+jρi, ν
b
(i)
j ρi])) o τcusp.

Since ν
1
2 does not appear in [σ(r)], it follows that r is the first occurrence

index of σ.

• n′ > r′ + 1
2
(dim(V ε

0 )− 1)

Now the representation χV,ψν
s o σcusp reduces for s = n′ −mr′ + 1, and

the representation νs o τcusp reduces for s = n′ −mr′ .

Theorem 4.3 now shows that [σ(r)] is obtained from [σ] by multiplying

with χ−1
V,ψ all G̃L-members of [σ], adding the representations ν−

1
2 , ν−

3
2 , . . . ,

νmr′−n′ and replacing σcusp with τcusp.

From Theorem 4.2 we know that the representation σ(r) is in the discrete

series. But, ν
1
2 appears in [σ(r)] with the multiplicity two and consequently

σ(r) can’t be a strongly positive representation (by Lemma 3.3).

In the sequel, we use Theorem 3.5 to describe discrete series σ(r) as
precise as we can. So, we write σ(r) as a subrepresentation of the induced
representation of the form

δ([νa
′
1ρ′1, ν

b′1ρ′1])× δ([νa
′
2ρ′2, ν

b′2ρ′2])× · · · × δ([νa
′
lρ′l, ν

b′lρ′l]) o τsp,

where ρ′i ∈ {ρ1, ρ2, . . . , ρk}, a′i ≤ 0 and a′i + b′i > 0 for i = 1, 2, . . . , l. Fur-
ther, τsp is an irreducible strongly positive representation such that [τsp] is

contained in [σ(r)]. Hence, at least one of the representations ν
1
2 and ν−

1
2

has to appear in some segment [νa
′
iρ′i, ν

b′iρ′i], i ∈ {1, 2, . . . , l}. Since a′i ≤ 0
and b′i > 0, both these representations appear in this segment.

Our next claim is that l = 1. Suppose, on the contrary, that l > 1.
We conclude that there is some j ∈ {1, 2, . . . , l}, j 6= i, such that

ν
1
2 /∈ [νa

′
jρ′j, ν

b′jρ′j]. But, the union of the segments [νa
′
i , νb

′
i ] and [νa

′
jρ′j, ν

b′jρ′j]
is contained in [σ(r)], so there is at most one x, 0 ≤ |x| ≤ 1, such that
νxρ′j appears in [νa

′
jρ′j, ν

b′jρ′j]. This contradicts the fact that the ends of the

segment [νa
′
jρ′j, ν

b′jρ′j] satisfy a′j ≤ 0 and b′j > 0. Thus, l = 1 and ρ′1
∼= 1F× .

In this way we obtained the following embedding:

σ(r) ↪→ δ([νa
′
1 , νb

′
1 ]) o τsp.
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Since a′1 ≤ 0, using Proposition 5.6 we obtain a contradiction with the
strong positivity of σ. Therefore, this case is impossible and Theorem 6.1 is
proved.

We point out that the obtained results closely parallel those contained in
the Theorem 4.2 of the manuscript [15] for the dual pair (Sp(n), O(V )).

7 Lifts of strongly positive discrete series of

the orthogonal groups

The purpose of this section is to determine the first occurrence indices of
strongly positive discrete series of the odd orthogonal groups which appear
in the correspondence given by Theorem 4.2 and to provide a description of
the lifts of such representations in the metaplectic tower.

Thus, we let τ ∈ Irr(O(Vr)) denote a strongly positive discrete series such
that Θ(τ,mr− 1

2
) 6= 0 and realize it as a unique irreducible subrepresentation

of the induced representation of the form

(
k∏
i=1

ki∏
j=1

δ([νaρi−ki+jρi, ν
b
(i)
j ρi])) o τcusp,

with k minimal and ki minimal for i = 1, 2, . . . , k, where τcusp ∈ Irr(O(Vr′))
is a cuspidal representation and ρi an irreducible cuspidal representation of
GL(nρi

, F ) (this defines nρi
) for i = 1, 2, . . . , k.

Note that Proposition 5.1 yields that the representation τ(l) is not a
discrete series representation for l > mr − 1

2
.

In the following theorem we describe the first occurrence indices of certain
strongly positive discrete series of the odd orthogonal groups.

Theorem 7.1. Let τ ∈ Irr(O(Vr)) be a strongly positive discrete series with
a non-zero lift on the (mr− 1

2
)–th level of the metaplectic tower. Suppose that

τcusp ∈ Irr(O(Vr′)) is a partial cuspidal support of τ and σcusp ∈ Irr(S̃p(n′))
the first non-zero lift of τcusp. Let n = mr− 1

2
. Further, define M = {|x| : νx

appears in [τ ]} and denote by amin the minimal element of M . If M = ∅, let
amin = mr′ − n′ + 1.

If amin = 1
2

or r′ = n′− 1
2
(dim(V0)− 1), then the first occurrence index of

τ is n. Otherwise, the first occurrence index of τ is n− amin + 3
2
.
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The remaining part of this section is devoted to the proof this theorem.
Again, we have two main cases to discuss.

First, assume that ν
1
2 does not appear in [τ ]. This implies r′ ≥ n′ −

1
2
(dim(V0)− 1). This leaves us two possibilities:

• r′ = n′ − 1
2
(dim(V0)− 1):

In this case both representation χV,ψν
soσcusp and νsoτcusp reduce for s =

1
2
. From the classification of strongly positive discrete series, elaborated in

section 2, we deduce that there is no representations of the form νs appearing
in [τ ].

Applying Theorem 4.2 we obtain that τ(n) is a discrete series represen-
tation and in the same way as before we may conclude that it is strongly
positive. This yields the following embedding:

τ(n) ↪→ (
k∏
i=1

ki∏
j=1

δ([χV,ψν
aρi−ki+jρi, χV,ψν

b
(i)
j ρi])) o σcusp.

Proposition 5.1 implies Θ(τ, n−1) = 0. So, n is the first occurrence index
of τ .

• r′ > n′ − 1
2
(dim(V0)− 1):

In this case, the representation νso τcusp reduces for s = mr′−n′ and the
representation χV,ψν

s o σcusp reduces for s = mr′ − n′ − 1.

Theorem 4.3 shows that [τ(n)] is obtained from [τ ] by multiplying with

χV,ψ all the elements ofR appearing in [τ ], adding the representations χV,ψν
1
2 ,

χV,ψν
3
2 , . . . , χV,ψν

mr′−n′−1 and replacing τcusp with σcusp.

There are two main cases to consider:

1. There is no representation of the form νs appearing in [τ ], for s ∈ R:
As before, we conclude that τ(n) is a strongly positive discrete series
which is a unique irreducible subrepresentation of

χV,ψν
1
2 × χV,ψν

3
2 × · · · × χV,ψν

mr′−n′−1×

(
k∏
i=1

ki∏
j=1

δ([χV,ψν
aρi−ki+jρi, χV,ψν

b
(i)
j ρi])) o σcusp.
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Theorem 5.3 from [11] impliesRP1(τ(n))(χV,ψν
1
2 ) 6= 0. SinceRP1(τ)(ν

1
2 ) =

0, part 2 of Proposition 5.1 shows Θ(σ, n− 1) 6= 0.

From Corollary 5.4 we obtain that τ(n − l) is a discrete series repre-
sentation for each l > 0 such that Θ(τ, n− l) 6= 0. In the same way as
above we see that it must be strongly positive.

Since [τ(n− l)] is obtained from [τ(n)] by subtraction of the represen-

tations χV,ψν
1
2 , χV,ψν

3
2 , . . . , χV,ψν

2l−1
2 , for l ∈ {1, 2, . . . , mr′ − n′ − 1

2
},

it is not hard to see, using Proposition 5.1, that Θ(τ, n − l) 6= 0 for
l ∈ {1, 2, . . . ,mr′ − n′ − 1

2
}. Furthermore, τ(n − l) is a unique irre-

ducible subrepresentation of the induced representation

χV,ψν
2l+1

2 × χV,ψν
2l+3

2 × · · · × χV,ψν
mr′−n′−1×

(
k∏
i=1

ki∏
j=1

δ([χV,ψν
aρi−ki+jρi, χV,ψν

b
(i)
j ρi])) o σcusp,

for l ∈ {1, 2, . . . ,mr′ − n′ − 1
2
}.

Since there is no representation of the form χV,ψν
s appearing in [τ(n−

mr′ + n′ + 1
2
)], Proposition 5.1 shows that the first occurrence index of

τ equals n−mr′ + n′ + 1
2
.

2. There is some representation of the form νs appearing in [τ ]: We may
suppose that ρ1 is a trivial representation. Obviously, aρ1 − k1 + 1 is
strictly greater than 1

2
and aρ1 equals mr′ − n′.

For abbreviation, let aj stand for aρ1−k1 +j, for j = 1, 2, . . . , k1. Since

χV,ψν
1
2 appears in [τ(n)] with multiplicity one, it follows that τ(n1) is

strongly positive representation for each n1 ≤ n such that Θ(τ, n1) 6= 0.

Also, τ(n) is the unique irreducible subrepresentation of

χV,ψν
1
2 × χV,ψν

3
2 × · · · × χV,ψν

a1−2 ×
k1∏
j=1

δ([χV,ψν
aj−1, χV,ψν

b
(1)
j ]))×

(
k∏
i=2

ki∏
j=1

δ([χV,ψν
aρi−ki+jρi, χV,ψν

b
(i)
j ρi])) o σcusp.

Arguing in the same way as in the analogous situation in the meta-
plectic case, we deduce that Θ(τ, n − l) 6= 0 for l ∈ {1, 2, . . . , a1 − 3

2
}
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and n− a1 + 3
2

is the first occurrence index of τ . Further, τ(n− l) is a
unique irreducible representation of the induced representation

χV,ψν
l+ 1

2 × χV,ψν
l+ 3

2 × · · · × χV,ψν
a1−2 ×

k1∏
j=1

δ([χV,ψν
aj−1, χV,ψν

b
(1)
j ]))×

(
k∏
i=2

ki∏
j=1

δ([χV,ψν
aρi−ki+jρi, χV,ψν

b
(i)
j ρi])) o σcusp,

for l ∈ {1, 2, . . . , a1 − 3
2
}.

It remains to consider the case when the representation ν
1
2 appears in

[τ ]. Without loss of generality we may suppose that ρ1 is a trivial character.
Similarly as in the previous section, we have to examine three possibilities.

• r′ = n′ − 1
2
(dim(V0)− 1):

The specificity of this case is that both induced representations νs o τcusp
and χV,ψν

s o σcusp reduce for s = 1
2
. On account of Theorem 3.1, we have

k1 = 1 and aρ1 = 1
2
.

Furthermore, [τ(n)] is obtained from [τ ] by replacing τcusp with σcusp and
multiplying all other members of [τ ] by χV,ψ.

From the equality of cuspidal reducibilities for τcusp and σcusp, it may be
concluded that τ(n) is the strongly positive discrete series which is a unique
irreducible subrepresentation of

δ([χV,ψν
1
2 , χV,ψν

b
(1)
1 ])× (

k∏
i=2

ki∏
j=1

δ([χV,ψν
aρi−ki+jρi, χV,ψν

b
(i)
j ρi])) o σcusp.

Suppose that the lift Θ(τ, n−1) is non-zero. Then Proposition 5.1, enhanced

by Theorem 5.3 of [11] , implies b
(1)
1 = 1

2
. From Theorem 4.3 it follows

that there is no representation χV,ψν
1
2 appearing in [τ(n − 1)], contrary to

Proposition 5.6.
It follows that n is the first occurrence index of τ .

• r′ < n′ − 1
2
(dim(V0)− 1):
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The induced representation νs o τcusp reduces for s = n′ − mr′ and the in-
duced representation χV,ψν

s o σcusp reduces for s = n′ −mr′ + 1. According
to Theorem 4.3, [τ(n)] is obtained from [τ ] by replacing τcusp with σcusp, mul-
tiplying GL-members of [τ ] by χV,ψ and then subtracting the representations

χV,ψν
1
2 , χV,ψν

3
2 , . . . , χV,ψν

n′−mr′ .
The strong positivity of the representation τ and the above discussion

show that for each i ∈ {1, 2, . . . , k} there is at most one x, |x| ≤ 1 such that
χV,ψν

x appears in [τ(n)]. Since τ(n) is in the discrete series, from Theorem
3.5 we see that it is strongly positive.

An easy computation shows that τ(n) is a unique irreducible subrepre-
sentation of the induced representation

δ([χV,ψν
3
2 , χV,ψν

b
(1)
1 ])×δ([χV,ψν

5
2 , χV,ψν

b
(1)
2 ])×· · ·×δ([χV,ψνn

′−mr′+1, χV,ψν
b
(1)
k1 ])

×(
k∏
i=2

ki∏
j=1

δ([χV,ψν
aρi−ki+jρi, χV,ψν

b
(i)
j χV,ψρi])) o σcusp.

That n is the first occurrence index of τ follows directly from Proposition
5.1.

• r′ > n′ − 1
2
(dim(V0)− 1):

The induced representation νs o τcusp reduces for s = mr′ − n′, and the
representation χV,ψν

soσcusp reduces for s = mr′−n′−1. The representation

χV,ψν
1
2 appears in [τ(n)] with multiplicity two, since [τ(n)] is obtained from

[τ ] by replacing τcusp with σcusp, multiplying other members of [τ ] by χV,ψ
and adding χV,ψν

1
2 , χV,ψν

3
2 , . . . , χV,ψν

mr′−n′−1.
According to Lemma 3.3, τ(n) is not a strongly positive discrete series,

but the results of the paper [4] show that it is a discrete series representation.
Applying Theorem 3.5 and analysis similar to that in the last case consid-

ered in the previous section, we write τ(n) as an irreducible subrepresentation
of the induced representation of the form

δ([χV,ψν
a, χV,ψν

b]) o σsp,

where a ≤ 0, a+ b > 0 and σsp ∈ S2 a strongly positive discrete series.
Using Proposition 5.5 we obtain an embedding which contradicts the

strong positivity of τ . Consequently, this case is not possible.
This completes the proof of Theorem 7.1.
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